Blind source separation for convolutive mixtures based on the joint diagonalization of power spectral density matrices

نویسندگان

  • Tiemin Mei
  • Alfred Mertins
  • Fuliang Yin
  • Jiangtao Xi
  • Joe F. Chicharo
چکیده

This paper studies the problem of blind separation of convolutively mixed source signals on the basis of the joint diagonalization (JD) of power spectral density matrices (PSDMs) observed at the output of the separation system. Firstly, a general framework of JD-based blind source separation (BSS) is reviewed and summarized. Special emphasis is put on the separability conditions of sources and mixing system. Secondly, the JD-based BSS is generalized to the separation of convolutive mixtures. The definition of a time and frequency dependent characteristic matrix of sources allows us to state the conditions under which the separation of convolutive mixtures is possible. Lastly, a frequency-domain approach is proposed for convolutive mixture separation. The proposed approach exploits objective functions based on a set of PSDMs. These objective functions are defined in the frequency domain, but are jointly optimized with respect to the timedomain coefficients of the unmixing system. The local permutation ambiguity problems, which are inherent to most frequency-domain approaches, are effectively avoided with the proposed algorithm. Simulation results show that the proposed algorithm is valid for the separation of both simulated and real-word recorded convolutive mixtures. r 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind source separation of convolved sources by joint approximate diagonalization of cross-spectral density matrices

In this paper we present a new method for separating non-stationary sources from their convolutive mixtures based on approximate joint diagonalizing of the observed signals’ cross-spectral density matrices. Several blind source separation (BSS) algorithms have been proposed which use approximate joint diagonalization of a set of scalar matrices to estimate the instantaneous mixing matrix. We ex...

متن کامل

A Joint Diagonalization Method for Convolutive Blind Separation of Nonstationary Sources in the Frequency Domain

A joint diagonalization algorithm for convolutive blind source separation by explicitly exploiting the nonstationarity and second order statistics of signals is proposed. The algorithm incorporates a non-unitary penalty term within the cross-power spectrum based cost function in the frequency domain. This leads to a modification of the search direction of the gradient-based descent algorithm an...

متن کامل

Blind Signal Separation of Convolutive Mixtures: A Time-Domain Joint-Diagonalization Approach

We address the blind source separation (BSS) problem for the convolutive mixing case. Second-order statistical methods are employed assuming the source signals are non-stationary and possibly also non-white. The proposed algorithm is based on a joint-diagonalization approach, where we search for a single polynomial matrix that jointly diagonalizes a set of measured spatiotemporal correlation ma...

متن کامل

Blind Source Separation with Pure Delay Mixtures

We address the problem of blind separation of mixtures consisting of pure unknown delays in addition to scalar mixing coefficients. Such a mixture is a hybrid situation resembling both static and convolutive mixtures, but essentially different from both: On one hand, static-mixture approaches cannot be readily applied in this context; On the other hand, conventional convolutive-mixture approach...

متن کامل

Blind separation of speech mixtures based on nonstationarity

This paper presents a method for blind separation of convolutive mixtures of speech signals, based on the joint diagonalization of the time varying spectral matrices of the observation records and a novel technique to handle the problem of permutation ambiguity in the frequency domain. Simulations show that our method works well even for rather realistic mixtures in which the mixing filter has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2008